Uniform Reconstruction Quantization (URQ)

Figure 1: Uniform Quantization Step Size (QStep) of URQ in HEVC. The Quantization Parameter (QP) has a binary logarithmic relationship with the QStep.

- URQ uniformly quantizes transform coefficients based on a QStep/QP (see Figure 1) without taking into account the perceptual characteristics of luma and chroma pixel data in a Coding Unit (CU).
Bits are, therefore, wasted on perceptually insignificant luma and chroma pixel regions. URQ is not a perceptually optimized quantization technique, which constitutes a significant drawback.

AdaptiveQP in HEVC

Figure 2: In AdaptiveQP, the $2 N \times 2 N$ CUs at QuadTree (QT) depth levels $0-2$ are partitioned into four $N \times N$ CUs, where $N=32$ (level 0), $N=16$ (level 1) or $N=8$ (level 2). Each CU is then partitioned into four sub-blocks.

$$
\begin{array}{ll}
Q=q+\left[6 \times \log _{2}(n)\right] & \text { (1) } \\
n=\frac{f \cdot l+t}{l+f \cdot t} & \text { (2) } \\
f=2 & \begin{array}{l}
\text { Q-CU-level perceptual QP. } \\
\text { q- Frame-level QP. } \\
n \text { - Normalized spatial activity in a luma CB. } \\
f-\text { Scaling factor (default QP adaptation range in } \mathrm{HM} \text {). } \\
l-\text { Non-normalized spatial activity in a luma CB. } \\
t-\text { Mean spatial activity for all } 2 N \times 2 N \text { CUs. } \\
\sigma_{Y, k}^{2}-\text { Variance of pixels in sub-block } k \text { of a luma } \mathrm{CB}
\end{array} \tag{3}\\
l=1+\min \left(\sigma_{Y, k}^{2}\right), \quad k=1, \ldots, 4 & \text { (4) }
\end{array}
$$

- AdaptiveQP is a luma-based perceptual quantization technique in JCT-VC HEVC HM.
- Compared with URQ, it can decrease bitrates without incurring a discernible loss of reconstruction quality. AdaptiveQP increases or decreases the QP of an entire CU based on the variance of pixels in sub-block k of a Y Coding Block (CB) only, which constitutes a shortcoming. See equations (1)-(4) and Figure 2

Proposed C-BAQ Technique in HEVC

(a)

(b)

(c)

Figure 3: The sizes of sub-blocks k in luma and chroma CBs, in C-BAQ, within a $2 N \times 2 N \mathrm{CU}: \mathrm{Y}$ (gray), Cb (blue), Cr (red) There are four constituent sub-blocks in the Y, Cb and Cr CBs. Variables: z (Y sub-block) and m (Cb and Cr sub-blocks).

$$
\begin{gather*}
\tilde{Q}=q+\left[6 \times \log _{2}(\tilde{n})\right] \\
\tilde{n}=\frac{f \cdot(l+b+d)+t}{(l+b+d)+f \cdot t} \\
b=1+\min \left(\sigma_{C b, k}^{2}\right), \quad k=1, \ldots, 4 \tag{7}\\
d=1+\min \left(\sigma_{C r, k}^{2}\right), \quad k=1, \ldots, 4
\end{gather*}
$$

- C-BAQ is a cross-color channel perceptual quantization method which improves upon AdaptiveQP - C-BAQ computes the pixel variances in all three CBs. See equations (5)-(8) and Figure 3 .
- This greatly decreases bitrates (See Table 1) without affecting perceptual quality (see Figures 4 and 5).

- Best Overall Bitrate Reductions: 15.9% (Y), $13.1 \%(\mathrm{Cb})$ and 16.1% (Cr) - See Table 1 and Figure 5
- Discussion: C-BAQ achieves superior results when applied to the 4:4:4 version of a given sequence. - Conclusion: Cross-color channel CU-level QP selection is superior to luma-based CU-level QP selection. - Future Work: CB-level perceptual quantization of 4:4:4 high bit-depth video data

