

Uniform Reconstruction Quantization (URQ)

Figure 1: Uniform Quantization Step Size (QStep) of URQ in HEVC. The Quantization Parameter (QP) has a binary logarithmic relationship with the QStep.

- URQ uniformly quantizes transform coefficients based on a QStep/QP (see Figure 1) without taking into account the perceptual characteristics of luma and chroma pixel data in a Coding Unit (CU).
- Bits are, therefore, wasted on perceptually insignificant luma and chroma pixel regions. URQ is not a perceptually optimized quantization technique, which constitutes a significant drawback.

AdaptiveQP in HEVC

Figure 2: In AdaptiveQP, the 2N × 2N CUs at QuadTree (QT) depth levels 0-2 are partitioned into four N × N CUs, where N=32 (level 0), N=16 (level 1) or N=8 (level 2). Each CU is then partitioned into four sub-blocks.

$$Q = q + \left[6 \times \log_2(n)\right] \tag{1}$$

$$n = \frac{f \cdot l + t}{l + f \cdot t} \tag{2}$$

$$f = 2 \tag{3}$$

$$\sigma^2_{\gamma}$$

$$l = 1 + \min(\sigma_{Y,k}^2), k = 1,...,4$$
 (4)

- AdaptiveQP is a luma-based perceptual quantization technique in JCT-VC HEVC HM.
- Compared with URQ, it can decrease bitrates without incurring a discernible loss of reconstruction quality.
- AdaptiveQP increases or decreases the QP of an entire CU based on the variance of pixels in sub-block k of a Y Coding Block (CB) only, which constitutes a shortcoming. See equations (1)-(4) and Figure 2.

CROSS-COLOR CHANNEL PERCEPTUALLY ADAPTIVE QUANTIZATION FOR HEVC

Lee Prangnell, Miguel Hernández-Cabronero and Victor Sanchez

Department of Computer Science, University of Warwick, Coventry, England, UK

- CU-level perceptual QP.
- Frame-level QP.
- Normalized spatial activity in a luma CB.
- f Scaling factor (default QP adaptation range in HM).
- I Non-normalized spatial activity in a luma CB.
- t Mean spatial activity for all $2N \times 2N$ CUs.
 - Variance of pixels in sub-block k of a luma CB.

$$\tilde{Q} = q$$

$$\tilde{n} = \frac{f}{(l)}$$

$$b=1+\min($$

$$d = 1 + \min($$

- •
- •

Figure 5: DuckAndLegs 4:4:4 sequence compressed with C-BAQ (left) versus AdaptiveQP (right).

- •

Proposed C-BAQ Technique in HEVC

Figure 3: The sizes of sub-blocks k in luma and chroma CBs, in C-BAQ, within a 2N×2N CU: Y (gray), Cb (blue), Cr (red). There are four constituent sub-blocks in the Y, Cb and Cr CBs. Variables: z (Y sub-block) and m (Cb and Cr sub-blocks).

$q + \left[6 \times \log_2(\tilde{n})\right]$	(5)
$\frac{f \cdot (l+b+d) + t}{l+b+d + f \cdot t}$	(6)
$\left(\sigma^{2}_{Cb,k}\right), k=1,\ldots,4$	(7)
$\left(\sigma^{2}_{Cr,k}\right), k=1,\ldots,4$	(8)

\tilde{Q} — CU-level cross color channel pe
\tilde{n} — Normalized combined spatial act
b — Non-normalized spatial activity in
d — Non-normalized spatial activity in
$\sigma^2_{Cb,k}$ — Variance of pixels in sub-bloc
$\sigma^2_{Cr,k}$ — Variance of pixels in sub-bloc

C-BAQ is a cross-color channel perceptual quantization method which improves upon AdaptiveQP. C-BAQ computes the pixel variances in all three CBs. See equations (5)-(8) and Figure 3. • This greatly decreases bitrates (See Table 1) without affecting perceptual quality (see Figures 4 and 5).

Figure 4: KristenAndSara 4:2:0 sequence coded with

Table 1: BD-Rate results attained by the proposed C-BAQ technique compared with AdaptiveQP. The All Intra (AI) results are shown on the left and the Random Access results (RA) are shown on the right.

C-BAQ versus AdaptiveQP (YCbCr 4:2:0) – Al				C-BAQ versus AdaptiveQP (YCbCr 4:2:0) – RA				
Sequence	BD-Rate %			Sequence	BD-Rate %			
	Y	Cb	Cr		Y	Cb	Cr	
FourPeople (8-bit)	-9.5	-8.6	-9.9	FourPeople (8-bit)	-8.7	-7.5	-8.0	
KristenAndSara (8-bit)	-14.3	-12.3	-12.5	KristenAndSara (8-bit)	-15.5	-12.8	-11.8	
ParkScene (8-bit)	-5.4	-8.0	-7.8	ParkScene (8-bit)	-4.0	-6.1	-6.2	
Traffic (8-bit)	-8.6	-10.6	-13.5	Traffic (8-bit)	-4.9	-7.0	-9.0	
C-BAQ versus AdaptiveQP (YCbCr 4:2:2) – Al				C-BAQ versus AdaptiveQP (YCbCr 4:2:2) – RA				
Sequence	BD-Rate %			Sequence	BD-Rate %			
	Y	Cb	Cr		Y	Cb	Cr	
PeopleOnStreet (8-bit)	-9.8	-13.4	-9.6	PeopleOnStreet (8-bit)	-5.3	-5.5	-3.9	
DuckAndLegs (10-bit)	-6.0	-4.2	-8.3	DuckAndLegs (10-bit)	-8.0	-9.2	-11.0	
ParkScene (10-bit)	-9.7	-9.2	-16.1	ParkScene (10-bit)	-7.5	-12.8	-13.5	
Traffic (10-bit)	-9.2	-12.2	-15.3	Traffic (10-bit)	-5.0	-9.3	-11.4	
C-BAQ versus AdaptiveQP (YCbCr 4:4:4) – Al				C-BAQ versus AdaptiveQP (YCbCr 4:4:4) – RA				
Sequence	BD-Rate %			Sequence	BD-Rate %			
	Y	Cb	Cr		Y	Cb	Cr	
PeopleOnStreet (8-bit)	-11.8	-14.0	-9.0	PeopleOnStreet (8-bit)	-6.7	-7.1	-6.4	
DuckAndLegs (10-bit)	-14.0	-7.0	-11.2	DuckAndLegs (10-bit)	-15.9	-13.1	-16.1	
ParkScene (10-bit)	-15.6	-8.7	-19.3	ParkScene (10-bit)	-12.0	-16.4	-17.0	
Traffic (10-bit)	-11.1	-13.4	-15.9	Traffic (10-bit)	-5.6	-11.3	-11.9	

Best Overall Bitrate Reductions: 15.9% (Y), 13.1% (Cb) and 16.1% (Cr) — See Table 1 and Figure 5. **Discussion:** C-BAQ achieves superior results when applied to the 4:4:4 version of a given sequence. **Conclusion:** Cross-color channel CU-level QP selection is superior to luma-based CU-level QP selection. **Future Work:** CB-level perceptual quantization of 4:4:4 high bit-depth video data.

erceptual QP. ctivity in all three CBs. n a Cb CB. n a Cr CB. ock k of a Cb CB. ck *k* of a Cr CB.