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HEVC Screen Content Coding Extension (SCM) 

 

 

HEVC 
RExt + SCM [1, 2] 

 

Intra Block Copy 

Palette Mode 
Adaptive Motion 

Vector Resolution 

Adaptive Color 

Space Transform 
Perceptual Video Coding? 
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Motivation 

• Perceptually optimized video coding is not 
exploited in HEVC RExt + SCM [1, 2]. 

• YCbCr 4:4:4 screen content video data contains a 
high degree of perceptual redundancy in all three 
color channels [3]. 
• In particular, the perceptual compression of high bit 

depth chrominance data can facilitate considerable 
overall bitrate reductions. 

• JND-Based Perceptual Quantization (PQ) 
• JND-Based Coding Block (CB)-Level PQ 

• PQ performed on Y, Cb and Cr CBs.  

• Exploits JND-based luminance masking and also 
chrominance masking parabolic piecewise functions. 
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Coding Block (CB)-Level Quantization 

• HEVC enables the Quantization Step Size (QStep) to be modified at the CB level [3].  
• The data can be separately quantized in each color channel. This is useful for potential perceptual 

quantization techniques, particularly for YCbCr 4:4:4 data in which perceptual redundancy is high. 

• The size of chroma CBs is dependent on the chroma sampling ratio of the video data. 



SIP Lab 

JND-Based CB-Level Perceptual Quantization 

• L(μY), CCb(μCb) and CCr(μCr) constitute the JND-based visibility thresholds for luminance masking 
and chrominance masking; they are based on luminance and chrominance adaptation. 

• L(μY), CCb(μCb) and CCr(μCr) also act as weights to modify the URQ QStep at the CB level. 

• Assuming that the quantization-induced errors, denoted as qY, qCb and qCr, do not exceed L(μY), 
CCb(μCb) and CCr(μCr), then visually lossless coding is achieved. 

• Applying L(μY), CCb(μCb) and CCr(μCr) to the URQ QStep at the CB level facilitates considerable 
bitrate reductions, especially so for high bit-depth chrominance data. 
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Luma CB-Level Perceptual QStep Adjustment 

 26 log 4Y YPQP PStep       Y Y YPStep QStep L     

• The luma CB-level perceptual QP, denoted as PQPY, has a binary logarithmic relationship with 
the corresponding perceptual QStep, denoted as PStepY. 

• Recall that the CB-level luma URQ QStep, denoted as QStepY , is weighed by L(μY).  
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Chroma CB-Level Perceptual QStep Adjustment 

(a) Cb, Cr Plane (Y = 0) (b) Cb, Cr Plane (Y = 0.5) (c) Cb, Cr Plane (Y = 1) 
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• The Human Visual System (HVS) is considerably less perceptually sensitive to quantization 
induced compression artifacts that are present in reconstructed chroma data. 

• We exploit the CU-level chroma Cb and Cr CB QP offset signalling mechanism in the Picture 
Parameter Set (PPS). 
• CCb(μCb) and CCr(μCr) weigh the Cb and Cr URQ QSteps at the CB level. 

• The chroma perceptual QPs, denoted as PQPCb and PQPCr, are employed as offsets against PQPY. 

• This results in CB-level perceptual chroma offset QPs, denoted as OQPCb and OQPCr. 
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Implementation: HEVC Coding Pipeline 

• Straightforward encoder side implementation due to exploiting the CU-level QP offset signalling 
mechanism in the PPS [4]. 

• Guaranteed bitstream conformance in accordance with HEVC standard v4 (i.e., ITU-T with Rec. 
H.265 v4) [5]. 
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Performance Evaluation: Subjective Evaluations 

• ITU.T P.910 Subjective Evaluation [6] 
• Four Participants 

• Viewing Distance = 59.1 Inch 

• Environmental Illuminance ≈ 20 Lux 

• TV/VDU Screen Size = 32 Inch 

• Mean Opinion Score (MOS) 

• Spatiotemporal Analysis 

• Subjective Tests Conducted 
• 106 Visual inspections (compressed data 

versus anchors). 

• MOS = 5 (Visually Lossless) chosen by 
participants in all RA QP = 22 tests. 

• High reductions of the PSNR values in 
luma and chroma data does not correlate 
with human visual perception. 
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Performance Evaluation: Subjective Evaluations 

(a) Kimono (10-Bit YCbCr 4:4:4) — Raw Data (b) Kimono (10-Bit YCbCr 4:4:4) — RA QP = 22 (Inter) 

• As proved to be the case with all screen content tested, including Camera-Captured Content 
(Kimono), the compressed data, as shown above, is indistinguishable from the raw data. 

• Considerable bitrate reductions, of up to 48.3% are attained by SC-PAQ on the Kimono 10-Bit YCbCr 
4:4:4 sequence without inducing a loss of perceptual visual quality; see (b) above. 
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Performance Evaluation: Subjective Evaluations 

(a) SSIM Index Map (Y Channel) (b) SSIM Index Map (Cb Channel) (c) SSIM Index Map (Cr Channel) 

• In (a), (b) and (c), the structural reconstruction errors (SSIM Index Map) are shown for the 
reconstructed data in the Y, Cb and Cr channels, respectively. 

• In spite of the considerable reductions of the PSNR values for quantifying the reconstruction errors 
in the compressed video data, these reconstruction errors are imperceptible to the HVS. 

• Focusing on chrominance data in particular (i.e., the data in the Cb and Cr channels), high levels of 
quantization can be applied thus facilitating considerable bitrate reductions. 
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Performance Evaluation: Objective Evaluations 

• Experimental Setup: SC-PAQ versus Two Anchors (HM 16.10 + SCM 8.0 [7] and IDSQ [8]); Random 
Access Configuration (RA); QPs 22, 27, 37 and 37 and YCbCr 4:4:4 Test Sequences. 

• Quantification: Bitrate reductions (and Y, Cb and Cr PSNR reductions) attained by SC-PAQ. 

• Due to the higher levels of perceptual quantization applied to the chroma channels, the SC-PAQ 
PSNR values in the Cb and Cr channels are, as expected, significantly inferior to anchors. 
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Performance Evaluation: Objective Evaluations 

• Plots showing the bitrate reductions achieved by SC-PAQ on the Kimono 10-Bit YCbCr 4:4:4 
sequence: luma channel (left) and chroma channels (right). 

• 10-Bit data contains a higher degree of variance in each color channel. Therefore, our evaluations 
showed that large bitrate reductions (i.e., up to 48.3%) can be achieved on this type of data. 
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Conclusions and Future Work 

• Conclusions 
• JND modelling can be applied to both luma and chroma 

video data. 

• JND-based perceptual quantisation of chroma data 
significantly decreases bitrates. 

• Perceptual quantisation is more effective when applied to 
high bit depth YCbCr 4:4:4 screen content video data. 

• Subjective evaluations are critically important for perceptual 
coding techniques. 

• Objective visual quality metrics are not useful for measuring 
perceptual quality. 

• Future Work 
• Extend the proposed technique to high bit depth RGB (GBR) 

video data. 

• Multiple applications for the proposed SC-PAQ technique 
including medical image and video coding.  
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