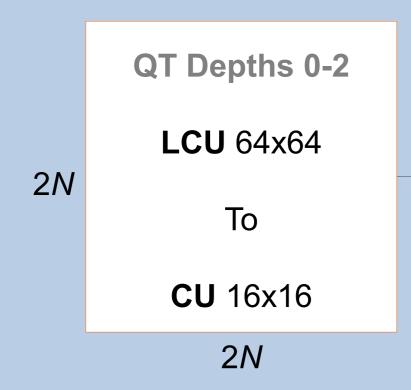

CODING BLOCK-LEVEL PERCEPTUAL VIDEO CODING FOR 4:4:4 DATA IN HEVC

Lee Prangnell, Miguel Hernández-Cabronero and Victor Sanchez

Department of Computer Science, University of Warwick, Coventry, England, UK


Uniform Reconstruction Quantization (URQ) in HEVC

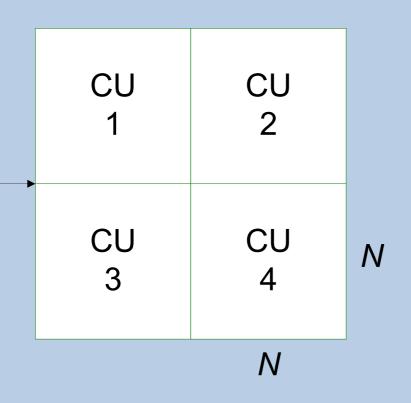


Figure 1: Uniform Quantization Step Size (QStep) of URQ in HEVC. The Quantization Parameter (QP) has a binary logarithmic relationship with the QStep.

- URQ uniformly quantizes transform coefficients based on a QStep/QP (see Figure 1) without taking into account the perceptual characteristics of luma and chroma sample data in a Coding Unit (CU) [1].
- Bits are, therefore, wasted on perceptually insignificant luma and chroma pixel regions. URQ is not a
 perceptually optimized quantization technique, which constitutes a significant drawback.

AdaptiveQP in HEVC

Figure 2: In AdaptiveQP, the $2N \times 2N$ CUs at QuadTree (QT) depth levels 0-2 are partitioned into four $N \times N$ CUs, where N=32 (level 0), N=16 (level 1) or N=8 (level 2). Each CU is then partitioned into four sub-blocks [1].

$$PQ_{Y} = Q + \left[6 \times \log_{2}(L)\right] \tag{1}$$

$$L = \frac{f \cdot l + t_Y}{l + f \cdot t_Y} \tag{2}$$

$$f = 2 \tag{3}$$

$$l = 1 + \min(\sigma^2_{Y,d}), \quad d = 1,...,4$$
 (4)

 PQ_{Y} — CU-level perceptual QP.

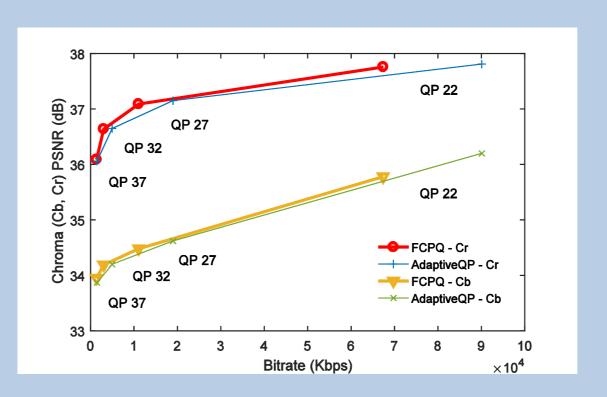
Q — Frame-level QP.

L — Normalized spatial activity in a luma CB.

f— Scaling factor (default QP adaptation range in HM).

l — Non-normalized spatial activity in a luma CB.

 t_Y — Mean spatial activity for all $2N \times 2N$ luma CBs.


 $\sigma^2_{Y,d}$ — Variance of pixels in sub-block d of a luma CB.

AdaptiveQP is a luma-based perceptual quantization technique in JCT-VC HEVC HM [2].

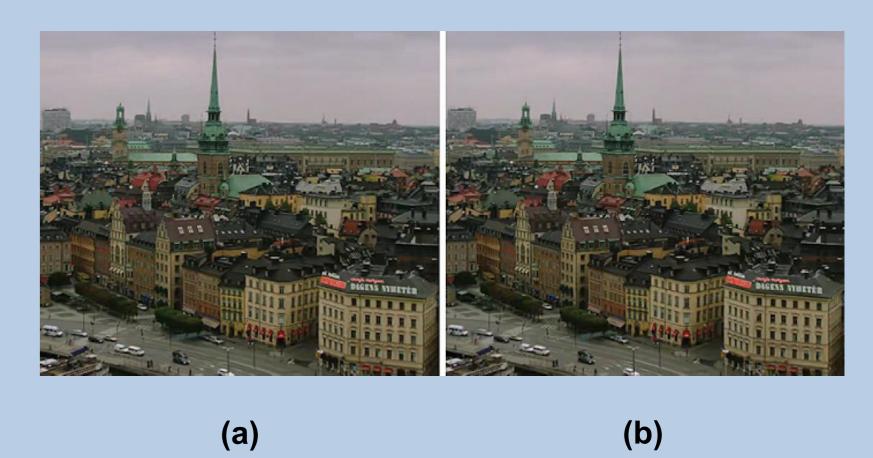
Compared with URQ, it can decrease bitrates without incurring a loss of perceptual quality [3].

• AdaptiveQP increases or decreases the QP of an entire CU based on the variance of pixels in sub-block d of a Y Coding Block (CB) only, which constitutes a shortcoming. See equations (1)-(4) and Figure 2.

Novel Full Color Perceptual Quantization Method (FCPQ)

Figure 3: Overall bitrate reductions and PSNR (dB) values attained by FCPQ and AdaptiveQP on the OldTownCross YCbCr 10-bit 4:4:4 HD sequence (RA).

$$PQ_{Cb} = Q + \left\lceil 6 \times \log_2(B) \right\rceil \tag{5}$$


$$PQ_{Cr} = Q + \left[6 \times \log_2(R)\right] \tag{6}$$

$$B = \frac{f \cdot b + t_{Cb}}{b + f \cdot t_{Cb}} \tag{7}$$

$$R = \frac{f \cdot r + t_{Cr}}{r + f \cdot t_{Cr}} \tag{8}$$

$$b = 1 + \min(\sigma^2_{Cb,k}), \quad k = 1,...,4$$
 (9)

$$t_{Cb} = \frac{1}{C_{Cb}} \sum_{n=1}^{C_{Cb}} b_n \tag{10}$$

Figure 4: The YCbCr 4:4:4 10-bit 1080p HD sequence OldTownCross. Subfigure (a): FCPQ. Subfigure (b): AdaptiveQP (both coded with initial Q = 37 and RA).

$$r = 1 + \min(\sigma^2_{Cr,z}), \quad z = 1,....,4$$
 (11)

$$t_{Cr} = \frac{1}{C_C} \sum_{n=1}^{C_{Cr}} r_n \tag{12}$$

 PQ_{Cb} — CB-level perceptual chroma Cb QP.

 PQ_{Cr} — CB-level perceptual chroma Cr QP.

B — Normalized spatial activity in a chroma Cb CB.

R — Normalized spatial activity in a chroma Cr CB.b — Non-normalized spatial activity in a chroma Cb CB.

r — Non-normalized spatial activity in a chroma Cr CB.

 t_{Cb} — Mean spatial activity for all $2N \times 2N$ chroma Cb CBs.

 t_{Cb} — Mean spatial activity for all $2N \times 2N$ chroma Cb Cbs. t_{Cr} — Mean spatial activity for all $2N \times 2N$ chroma Cr CBs.

- FCPQ is CB-level perceptual quantization technique in HEVC for YCbCr 4:4:4 and RGB video data.
- FCPQ computes the variances of raw data in all three CBs in a CU. See equations (5)-(12).
- The CB-level chroma QPs are signaled in the PPS by exploiting the CU-level QP offset technique [4].
- Bitrates are significantly decreased (See Figure 3) without affecting perceptual quality (see Figure 4).

Table 1: Average bitrate and PSNR (dB) percentage differences over QPs = {22,27,32,37} attained by FCPQ compared with AdaptiveQP on six YCbCr 4:4:4 and six RGB sequences. The All Intra test results are on the left and the Random Access test results are on the right.

	T :								T i								
Sequence	YCbCr 4:4:4				RGB					YCbCr 4:4:4				RGB			
	Bitrate	Y	Cb	Cr	Bitrate	G	В	R	Sequence	Bitrate	Y	Cb	Cr	Bitrate	G	В	R
BirdsInCage	-25.9	0.0	-0.5	-0.1	-14.6	0.0	-0.9	0.0	BirdsInCage	-12.6	0.0	0.0	0.0	-8.3	0.0	0.0	0.1
DuckAndLegs	-14.6	-0.3	-1.1	-0.6	-9.5	-0.7	-1.1	-0.4	DuckAndLegs	-12.4	0.2	0.1	0.0	-9.8	0.0	0.0	0.1
Kimono	-25.5	-0.5	-1.2	-0.5	-23.8	-0.7	-1.8	-1.0	Kimono	-13.8	0.1	-0.1	0.0	-11.3	-0.2	0.0	-0.2
OldTownCross	-28.7	-0.5	-2.1	-1.2	-25.2	-0.9	-2.6	-1.6	OldTownCross	-28.6	0.3	-0.3	-0.1	-21.4	-0.1	0.2	0.0
ParkScene	-18.4	-0.5	-1.2	-0.6	-16.6	-0.8	-1.7	-1.0	ParkScene	-12.9	-0.1	0.0	-0.1	-11.3	-0.2	0.0	-0.2
Traffic	-18.8	-0.9	-1.3	-0.9	-16.8	-1.1	-2.2	-1.5	Traffic	-11.6	-0.6	-0.2	-0.3	-9.3	-0.6	-0.4	-0.7

- Best Overall Bitrate Reductions: 28.7% OldTownCross YCbCr (AI) See Table 1.
- **Discussion:** FCPQ attains superior bitrate reduction results when applied to high variance video data.
- Conclusion: Full color CB-level QP adjustment is superior to luma-only CU-level QP selection.
- Future Work: JND-Based CB-level perceptual quantization of 4:4:4 high bit-depth video data.

[1] G. Sullivan, J-R. Ohm, W. Han and T. Wiegand, "Overview of the High Efficiency Video Coding (HEVC) Standard," *IEEE Trans. Circuits Syst. Video Technol.*, vol. 22, no. 12, pp. 1649-1668, 2012.
[2] K. McCann, C. Rosewarne, B. Bross, M. Naccari, K. Sharman and G. J. Sullivan (Editors), "HEVC Test Model 16 (HM 16) Encoder Description," *JCT-VC R1002, 18th Meeting of JCT-VC*, Sapporo, JP, 2014, pp. 1-59.
[3] K. Sato, M. Budagavi, M. Coban, H. Aoki and X. Li, "CE4: Summary report of Core Experiment on quantization," *JCT-VC F024, 6th Meeting of JCT-VC*, Torino, IT, 2011, pp. 1-20.
[4] D. Flynn, N. Nguyen, D. He, A. Tourapis, G. Cote and D.Singer, "RExt: CU-adaptive chroma QP offsets," *JCT-VC 00044, 15th Meeting of JCT-VC*, Geneva, CH, 2013, pp. 1-4.