Small FROG Logo

Renewable Energy

 

Renewable Technologies

Information From Wikipedia

Solar Photovoltaic Array

In urban and suburban areas, solar photovoltaic arrays are commonly used on rooftops to supplement power use; often the building will have a pre-existing connection to the power grid, in which case the energy produced by the PV array will be sold back to the utility in some sort of net metering agreement. In more rural areas, ground-mounted PV systems are more common. The systems may also be equipped with a battery backup system to compensate for a potentially unreliable power grid. In agricultural settings, the array may be used to directly power DC pumps, without the need for an inverter. In remote settings such as mountainous areas, islands, or other places where a power grid is unavailable, solar arrays can be used as the sole source of electricity, usually by charging a storage battery. Satellites use solar arrays for their power. In particular the International Space Station uses multiple solar arrays to power all the equipment on board. Solar photovoltaic panels are frequently applied in satellite power. However, costs of production have been reduced in recent years for more widespread use through production and technological advances. For example, single crystal silicon solar cells have largely been replaced by less expensive multicrystalline silicon solar cells, and thin film silicon solar cells have also been developed recently at lower costs of production yet (see Solar cell). Although they are reduced in energy conversion efficiency from single crystalline Si wafers, they are also much easier to produce at comparably lower costs. Together with a storage battery, photovoltaics have become commonplace for certain low-power applications, such as signal buoys or devices in remote areas or simply where connection to the electricity mains would be impractical. In experimental form they have even been used to power automobiles in races such as the World solar challenge across Australia. Many yachts and land vehicles use them to charge on-board batteries.

 

Solar Panels

 

Solar Hot Water

Solar hot water is water heated by the use of solar energy. Solar heating systems are generally composed of solar thermal collectors, a fluid system to move the heat from the collector to its point of usage. The system may use electricity for pumping the fluid, and have a reservoir or tank for heat storage and subsequent use. The systems may be used to heat water for a wide variety of uses, including home, business and industrial uses. Heating swimming pools, underfloor heating or energy input for space heating are more specific examples.

In many climates, a solar heating system can provide up to 85% of domestic hot water energy. In many northern European countries, combined hot water and space heating systems (solar combisystems) are used to provide 15 to 25% of home heating energy. In the southern regions of Africa like Zimbabwe, solar water heaters have been gaining popularity, thanks to the Austrian and other EU-funded projects that are promoting more environmentally friendly water heating solutions.

Residential solar thermal installations can be subdivided into two kinds of systems: compact and pumped systems. Both typically include an auxiliary energy source (electric heating element or connection to a gas or fuel oil central heating system) that is activated when the water in the tank falls below a minimum temperature setting such as 50 ℃. Hence, hot water is always available. The combination of solar hot water heating and using the back-up heat from a wood stove chimney to heat water can enable a hot water system to work all year round in cooler climates without the supplemental heat requirement of a solar hot water system being met with fossil fuels or electricity.

Among pumped options, there is an important distinction to be made regarding the sustainability of the design of the system. This relates to what source of energy powers the pump and its controls. The type of pumped solar thermal systems which use mains electricity to pump the fluid through the panels are called low carbon solar because the pumping negates the carbon savings of the solar by about 20%, according to data in a report called "Side by side testing of eight solar water heatings" by DTI UK. However, zero-carbon pumped solar thermal systems use solar electricity which is generated onsite using photovoltaics to pump the fluid and to operate its control electronics. This represents a zero operational carbon footprint and is becoming an important design goal for innovative solar thermal systems.

 

Solar Hot Water


 

Solar Shading

Use of solar shades is a proposed approach to the mitigation of global warming through planetary engineering. By intentionally changing the Earth's albedo, or reflectivity, scientists propose that we could reflect more heat back out into space, or intercept sunlight before it reaches the Earth through a literal shade built in space. A 0.5% albedo increase would roughly halve the effect of CO2 doubling.

 

Solar Shading
 

 

Thermal Mass

Thermal mass, in the most general sense, is any material that has the capacity to store heat. The following discussion pertains to its functional application in ecologically-sustainable building construction. When used correctly, it can significantly reduce the requirement for active heating and cooling systems and the consumption of active solar, renewable energy, and especially fossil fuel technologies.

Thermal mass should not be confused with insulation. Materials used for insulation typically have much lower thermal conductivity than materials used for thermal mass and generally do not have a high capacity to store heat. They can reduce unwanted heat transfer but are not significant sources of heat in themselves. Often a combination of good insulation and thermal mass is used to achieve an optimum solution. When correctly incorporated in building construction, it can be a useful method of controlling the flow or storage of heat to maintain thermal comfort.

The historic use of thermal mass in housing has been well established in hot arid climates or warm temperate regions. In cold temperate areas, it must be combined with good passive solar design to be effective. Its use in hot, humid areas is controversial. Many buildings contain 'incidental' thermal mass, e.g. timber frame, plasterboard ('drywall') and furniture. Specific materials which are used to increase thermal mass include clay brick, mud brick ('adobe'), stabilised or rammed earth (pise), stone, concrete, and water.

 

Thermal Mass

 

Heat Recovery Ventilation

Heat recovery ventilation is a ventilation system that employs a counter-flow heat exchanger between the inbound and outbound air flow. HRV provide fresh air and improved climate control, while also saving energy by reducing the heating (or cooling) requirements.

Heat Recovery Ventilators (HRVs), as the name implies, recover the heat energy in the exhaust air, and transfer it to fresh air as it enters the building. Energy recovery ventilators (ERVs) are closely related, however ERVs also transfer the humidity level of the exhaust air to the intake air.

As building efficiency is improved with insulation and weather-stripping, buildings are intentionally made more air-tight, and consequently less well ventilated. Since all buildings require a source of fresh air, the need for HRVs has become obvious. While opening a window does provide ventilation, the building's heat and humidity will then be lost in the winter and gained in the summer, both of which are undesirable for the indoor climate and for energy efficiency, since the building's HVAC systems must compensate. HRV technology offers an optimal solution: fresh air, better climate control and energy efficiency.

 

Heat Recovery Ventilation

 

Superinsulation

Superinsulation is an approach to building design, construction, and retrofitting. A superinsulated house is intended to be heated predominantly by intrinsic heat sources (waste heat generated by appliances and the body heat of the occupants), without using passive solar building design techniques or large amounts of thermal mass, and with very small amounts of backup heat. This has been demonstrated to work in very cold climates but requires close attention to construction details in addition to the insulation.

Some may consider that superinsulation is an alternative to passive solar design (although many building designs include features of both with special attention to preventing summer overheating). Superinsulation is one of the ancestors of the passive house approach. A related approach to efficient building design is zero energy building.

 

 

Low Energy Lighting

Low Energy Lighting refers to a type of lighting that utilizes light-emitting diodes (LEDs), organic light-emitting diodes (OLED), or polymer light-emitting diodes (PLED) as sources of illumination rather than electrical filaments or gas.

The term "solid state" refers to the fact that light in an LED is emitted from a solid object (a block of semiconductor) rather than from a vacuum or gas tube, as is the case in traditional incandescent light bulbs and fluorescent lamps. Unlike traditional lighting, however, SSL creates visible light with reduced heat generation or parasitic energy dissipation. In addition, its solid-state nature provides for greater resistance to shock, vibration, and wear, thereby increasing its lifespan significantly.

 

Low Energy Lighting

 

Micro Wind Turbine

Micro wind turbines may be as small as a fifty watt generator for boat or caravan use. Small units often have direct drive generators, direct current output, aeroelastic blades, lifetime bearings and use a vane to point into the wind. Larger, more costly turbines generally have geared power trains, alternating current output, flaps and are actively pointed into the wind. Direct drive generators and aeroelastic blades for large wind turbines are being researched.

A small wind turbine can be installed on a roof. Installation issues then include the strength of the roof, vibration, and the turbulence caused by the roof ledge. Small-scale rooftop wind turbines have been known to be able to generate power from 10% to up to 25% of the electricity required of a regular domestic household dwelling.

The turbines for residential scale use are available, they are usually approximately 7 feet (2 m) to 25 feet (8 m) in diameter and produce electricity at a rate of 900 watts to 10,000 watts at their tested wind speed. Some units have been designed to be very lightweight in their construction, e.g. 16 kilograms (35 lb), allowing sensitivity to minor wind movements and a rapid response to wind gusts typically found in urban settings and easy mounting much like a television antenna. It is claimed that they are inaudible even a few feet under the turbine. Dynamic braking regulates the speed by dumping excess energy, so that the turbine continues to produce electricity even in high winds. The dynamic braking resistor may be installed inside the building to provide heat (during high winds when more heat is lost by the building, while more heat is also produced by the braking resistor). The location makes low voltage (around 12 volt) distribution practical.

 

Micro Wind Turbine

 


Copyright © FROG. All rights reserved. Website Design By Lee Prangnell.